на главную | войти | регистрация | DMCA | контакты | справка | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


моя полка | жанры | рекомендуем | рейтинг книг | рейтинг авторов | впечатления | новое | форум | сборники | читалки | авторам | добавить

реклама - advertisement





Упаковка

Насколько плотно можно упаковать круги? Будем считать, что все круги имеют один радиус (скажем, 1) и мы хотим упаковать на значительном участке плоскости максимальное их число (представьте поднос, на котором нужно уместить как можно больше консервных банок).

Простейшая идея заключается в группировании кругов по четыре так, чтобы их центры образовывали квадрат. Тогда каждый круг, расположенный внутри, касается четырех соседних, а те, что на границе, касаются трех соседних:


Путеводитель для влюбленных в математику

Насколько эффективна такая упаковка? Один из критериев – измерить, какую часть плоскости покрывают все эти круги.

Посмотрим повнимательней на четыре круга, чьи центры лежат в вершинах квадрата. Радиусы кругов равны 1, потому сторона квадрата равна 2, а его площадь – 4. Квадрат не полностью покрыт областями, находящимися внутри кругов. Его перекрывает ровно четверть каждого из четырех кругов; таким образом, общая площадь кругов и квадрата р


Путеводитель для влюбленных в математику

Соотношение между покрытой и непокрытой частями плоскости равно

Путеводитель для влюбленных в математику
Мы можем усеять всю плоскость такими вот четверками окружностей, и они покроют примерно 78,5 % плоскости.

Неплохо, но можно сделать и лучше. Пусть теперь центры шести окружностей совпадают с вершинами правильного шестиугольника, а седьмая окружность располагается внутри него:


Путеводитель для влюбленных в математику

При таком подходе круги накрывают больше 90 % плоскости. Подумайте, как это вычислить. Ответ – в конце главы.

Гексагональная упаковка кругов на плоскости – самая плотная.

Естественно, возникает вопрос: а как насчет трех измерений?[161] Ответ, вероятно, был известен уже в античности, но со всей строгостью его сформулировал Иоганн Кеплер в начале XVII века. Кеплер утверждал, что наиболее плотная упаковка шаров такая, что при сечении плоскостью, проходящей через центры шаров в одном ряду, выясняется, что центры шести соседних шаров лежат на вершинах правильного шестиугольника, а центр седьмого шара совпадает с центром этого шестиугольника (см. рисунок выше). Тогда шары покрывают примерно 74 % пространства[162].

Сложность состояла в том, чтобы доказать, что это действительно наиболее плотная упаковка и нет никаких альтернатив. С задачей на плоскости разобрались довольно быстро, но решение пространственной задачи потребовало 400 лет. Лишь в 1990-е годы Томас Хэйлс[163] опубликовал сверхсложное доказательство, включающее теоретические выкладки и массу вычислений. Независимые эксперты дотошно изучили доказательство Хэйлса и не обнаружили там никаких погрешностей.


Теорема Птолемея | Путеводитель для влюбленных в математику | Окружности целуются